Cross-platform gene expression signature of human spermatogenic failure reveals inflammatory-like response.

نویسندگان

  • Andrej-Nikolai Spiess
  • Caroline Feig
  • Wolfgang Schulze
  • Frédéric Chalmel
  • Heike Cappallo-Obermann
  • Michael Primig
  • Christiane Kirchhoff
چکیده

BACKGROUND The molecular basis of human testicular dysfunction is largely unknown. Global gene expression profiling of testicular biopsies might reveal an expression signature of spermatogenic failure in azoospermic men. METHODS Sixty-nine individual testicular biopsy samples were analysed on two microarray platforms; selected genes were validated by quantitative real-time PCR and immunohistochemistry. RESULTS A minimum of 188 transcripts were significantly increased on both platforms. Their levels increased with the severity of spermatogenic damage and reached maximum levels in samples with Sertoli-cell-only appearance, pointing to genes expressed in somatic testicular cells. Over-represented functional annotation terms were steroid metabolism, innate defence and immune response, focal adhesion, antigen processing and presentation and mitogen-activated protein kinase K signalling pathway. For a considerable proportion of genes included in the expression signature, individual transcript levels were in keeping with the individual mast cell numbers of the biopsies. When tested on three disparate microarray data sets, the gene expression signature was able to clearly distinguish normal from defective spermatogenesis. More than 90% of biopsy samples clustered correctly into the corresponding category, emphasizing the robustness of our data. CONCLUSIONS A gene expression signature of human spermatogenic failure was revealed which comprised well-studied examples of inflammation-related genes also increased in other pathologies, including autoimmune diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-230: Analysis of TEX15 Expression in Testis Tissues of Severe Oligozoospermic and Non-Obstructive Azoospermic Men Referred to Royan Institute

Background: TEX15 is a novel protein that is required for chromosomal synapsis and meiotic recombination. Human TEX15 is located on chromosome 8(8p12 region) and expressed in testis and ovary, as is its mouse ortholog. Loss of TEX15 function in mice causes early meiotic arrest in males but not in females. Specifically, TEX15 deficient spermatocytes exhibit a failure in chromosomal synapsis. In ...

متن کامل

P-157: TLR5 Gene Expression in Endometrium of Women with Unexplained Recurrent Spontaneous Abortion

Background: Recurrent spontaneous abortion (RSA) is usually defined as three or more consecutive pregnancy losses before 20th week of gestation. Although different factors are considered as etiology of RSA but in some cases, despite of extensive work up, the cause of RSA remains unknown which called unexplained RSA. Immunological factors are suggested as etiological factors of unexplained RSA. ...

متن کامل

Effects of Inflammatory Cytokine Tumor Necrosis Factor-α on Human Mesenchymal Stem Cell Gene Expression: A Mechanism for Liver Regeneration

Introduction  Insulin-like growth factor I (IGF-I) which is produced in abundance in the normal adult liver, is deeply involved in hepatocyte survival, growth, and differentiation during liver development. IGF-I plays the roles via the receptor (IGF-IR) signaling pathway. IGF-IR unlike IGF-I is expressed strongly in the developing liver, but much more weakly in adults. Objective:  We hypothesi...

متن کامل

P-195: Analysis of Expression Level of Tex11 Gene in Obstructive and Non-Obstructive Azoospermic Men Referred to Royan Institute

Background: About 15% of couples worldwide suffer from infertility problem that half of these cases are related to male infertility. Spermatogenesis is a cumulative process and thousands of genes are involved in it. Change in one of these genes or their products can cause male infertility. Tex11 is a germ cell specific gene that is located on the X chromosome (Xq13.1 region). This gene was iden...

متن کامل

P 55: Sleep Disturbance and Epilepsy: an Inflammatory Pathway

Sleep plays a vital role in regulating physiological mechanisms in the human body. Nowadays, by the change of lifestyle and as a consequence of longer work hours and increased accessibility to media, sleep disturbance becomes a common problem in modern society. Many studies demonstrated that sleep disturbance triggers a systemic low-grade inflammation by increasing the level of several cytokine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human reproduction

دوره 22 11  شماره 

صفحات  -

تاریخ انتشار 2007